Recitation 3: Second Order ODE

Lecturer: Chenlin Gu

Exercise 1. *Find the general solution of the given differential equation:*

- y'' + 2y' 3y = 0;
- 4y'' 25y = 0.

Exercise 2. Find the solution of the initial value problem

$$y'' + y = 0, y(\pi/3) = 2, y'(\pi/3) = -4.$$

Describe its behavior for increasing t.

Exercise 3. Determine the values of α , if any, for which all solutions of

$$y'' - (2\alpha - 1)y' + \alpha(\alpha - 1)y = 0,$$

tend to zero as $t \to \infty$; also determine the values of α , if any, for which all (nonzero) solutions become unbounded as $t \to \infty$.

Exercise 4. Without solving, determine the Wronskian of two solutions to the following differential equation

$$t^4y'' - 2t^3y' - t^4y = 0.$$